Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

β-[H₂N(CH₂)₂NH₂]_{0.5}[ZnHPO₃], a second modification of ethylene-diamine zinc hydrogen phosphite

Laura E. Gordon and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Received 28 September 2004 Accepted 25 October 2004 Online 11 November 2004

The title compound, poly[dizinc(II)- μ -ethylenediamine-di- μ -(hydrogen phosphito)], β -[H₂N(CH₂)₂NH₂]_{0.5}[ZnHPO₃] or [Zn₂(HPO₃)₂(C₂H₈N₂)]_n, is a hybrid organic/inorganic solid built up from ethylenediamine molecules (which lie about inversion centres), Zn²⁺ cations (coordinated by three O atoms and one N atom) and HPO₃²⁻ hydrogen phosphite groups. The organic species bond to the Zn atom as unprotonated ligands, acting as bridges between infinite ZnHPO₃ layers that propagate as very buckled (001) sheets. The zincophosphite sheets contain polyhedral four- and eight-membered rings in a 4.8² topology. β -[H₂N(CH₂)₂-NH₂]_{0.5}·ZnHPO₃ complements the previously described α modification of the same stoichiometry [Rodgers & Harrison (2000). *Chem. Commun.* pp. 2385–2386].

Comment

Among the myriad variety of organically templated inorganic networks (Cheetham *et al.*, 1999), a small but distinctive family contains tetrahedral ZnO₃N and pyramidal SeO₃ or pseudo-

pyramidal HPO₃ building blocks. The inorganic moieties share vertices, as Zn-O-Se or Zn-O-P bonds, thereby forming an infinite sheet. The linear-chain diamine organic species bonds directly to zinc as a ligand via each N atom, thus acting as a 'pillar' between the inorganic sheets. Both modifications of ethylenediamine zinc selenite, [H₂N(CH₂)₂NH₂]_{0.5}·ZnSeO₃ (Choudhury et al., 2002; Millange et al., 2004), contain such sheets of ZnO₃N and SeO₃ groups, fused into a threedimensional network by the ethylenediamine moieties bonding to the Zn atoms via each NH₂ group. These modifications differ in the topological connectivity (O'Keeffe & Hyde, 1996) of the Zn and Se nodal atoms; the first (Choudhury et al., 2002) is based on 6³ inorganic sheets (each nodal atom participates in three six-membered rings), whereas the second (Millange et al., 2004) contains 4.8² sheets. The 1,4diaminobenzene template in [C₆N₂H₈]_{0.5}[ZnHPO₃] (Kirkpatrick & Harrison, 2004) acts in a similar way to ethylenediamine in the zinc selenite phases; in this case, 6³ polyhedral sheets built up from ZnO₃N and HPO₃ units arise. Conversely, in [H₂N(CH₂)₄NH₂]_{0.5}[ZnHPO₃] (Ritchie & Harrison, 2004), 4.8² polyhedral sheets arise from the ZnO₃N and HPO₃ units. Finally, [H₂N(CH₂)₂NH₂]_{0.5}[ZnHPO₃] (Rodgers & Harrison, 2000; hereafter known as the α modification of this stoichiometry) has a novel structure based on 4.82 sheets in which two independent networks form an interpenetrating array akin to some coordination polymers.

We describe here the title compound, (I), which crystallizes as a second, β , modification of $[H_2N(CH_2)_2NH_2]_{0.5}[ZnHPO_3]$. Compound (I) (Fig. 1) is built up from neutral unprotonated ethylenediamine $[H_2N(CH_2)_2NH_2]$ or $C_2H_8N_2$] molecules, Zn^{2+}

Figure 1
A view of a fragment of (I), showing the different conformations of the N1 and N2 ethylenediamine species. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. The symmetry codes are as given in Table 1.

metal-organic compounds

cations and HPO₃²⁻ hydrogen phosphite groups. Each complete ethylenediamine entity is generated from a halfmolecule H₂NCH₂- fragment by inversion symmetry. However, these entities differ significantly in their conformations (Table 1); in the N1-containing molecule, atoms Zn1 and C1^v (see Table 1 for symmetry code) are gauche, whereas in the N2-containing molecule, the equivalent pair of atoms, Zn2 and C2vi, are close to anti. Both the N atoms of each H₂N(CH₂)₂NH₂ molecule make ligand-like bonds to zinc by formal donation of their lone pair of electrons, as observed for the related systems (Rodgers & Harrison, 2000; Kirkpatrick & Harrison, 2004) noted above. The tetrahedral zinc coordination is completed by three O atoms [mean Zn-O =1.931 (10) Å], each of which form bridges to P atoms of nearby HPO_3^{2-} groups [mean Zn $-O-P = 135.1 (6)^{\circ}$]. The pseudopyramidal HPO₃²⁻ moieties have typical (Kirkpatrick & Harrison, 2004) geometric parameters, with a mean P-O distance of 1.513 (10) Å and a mean O-P-O angle of 112.9 (7)°. Both distinct HPO₃²⁻ groups form bridges to three nearby zinc cations. As usual, the PH moieties do not interact with any nearby chemical species.

The polyhedral building units in (I) thus consist of ZnO_3N and HPO_3 tetrahedra, linked by way of the O atoms. These units form sheets, built up from strictly alternating Zn- and P-centred moieties, which propagate in the (001) plane. Every tetrahedral node (*i.e.* the Zn and P atoms) participates in one four-atom loop (composed of the asymmetric unit atoms) and two eight-atom loops (Fig. 2), thus generating a 4.8^2 sheet topology (O'Keeffe & Hyde, 1996).

The organic species crosslink the (001) ZnHPO₃ sheets in a Zn-b-Zn (b is the organic bridge) fashion, as shown in Fig. 3, resulting in a hybrid 'pillared' structure in which the inorganic and organic components of the structure alternate along [001]. In principle, this arrangement represents an unusual kind of microporosity, with the channels bounded by both inorganic and organic surfaces. However, in (I), unlike the case of organically pillared zirconyl phosphates (Alberti *et al.*, 1999), the presence of the P-H bond protruding into the channel region and the steric bulk of the ethylenediamine moieties

Figure 2 A view of a fragment of a $ZnHPO_3$ layer in (I), showing the topological connectivity of the Zn (large spheres) and P (small spheres) tetrahedral nodes into 4.8^2 sheets. The lines linking the Zn and P nodes represent Zn-O-P bridges, which are not linear (see Table 1).

Figure 3The unit-cell packing in (I), in a polyhedral representation (ZnO₃N groups: light shading; HPO₃ groups: dark shading; ethylenediamine molecules in ball-and-stick representation). All H atoms, except the hydrogen phosphite H1 and H2 species, have been omitted for clarity.

means that there is no possibility of ingress by other chemical species. Finally, the ethylenediamine -NH2 groups in (I) participate in N-H···O hydrogen bonds (Table 2), all of which are close to linear (mean $H-H \cdot \cdot \cdot O = 172^{\circ}$). These hydrogen bonds appear to help to anchor the organic moiety to an eight-membered ring window in the zinc hydrogen phosphite layer, in a similar way to the behaviour of ethylenediamine in α -[H₂N(CH₂)₂NH₂]_{0.5}[ZnHPO₃] (Rodgers & Harrison, 2000). However, the zincophosphite eightmembered ring pores in (I) are distinctly flattened, whereas in α -[H₂N(CH₂)₂NH₂]_{0.5}[ZnHPO₃] they are far more regular. The recently reported ethylenediammonium zinc hydrogen phosphite $[H_3N(CH_2)_2NH_3][Zn_2(HPO_3)_3]$ (Lin et al., 2004) is a more conventional templated network (Cheetham et al., 1999), in which the organic species is protonated and interacts with the inorganic component by way of N-H···O hydrogen bonds. Interestingly, a 4.8² network topology is formed by the $[Zn_2(HPO_3)_3]^{2-}$ sheets.

Experimental

A mixture of zinc oxide (3.00 g), phosphorus acid (H₃PO₃, 2.02 g) and ethylenediamine (1.48 g) (molar ratio 2:3:2) was shaken in distilled water (20 ml) in a 60 ml HDPE (high-density polyethylene) bottle for a few minutes, resulting in the formation of a white slurry. The bottle was then placed in an oven at 353 K for 2 d. The solid product was filtered by suction filtration using a Buchner funnel and rinsed with water and acetone, resulting in intergrown fans of needle- and blade-like crystals of (I) accompanied by some undissolved zinc oxide.

metal-organic compounds

Crystal data

$[Zn_2(HPO_3)_2(C_2H_8N_2)]$	$D_x = 2.294 \text{ Mg m}^{-3}$
$M_r = 350.80$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 5099
a = 8.3609 (4) Å	reflections
b = 7.9369 (4) Å	$\theta = 2.5 - 27.4^{\circ}$
c = 15.8259 (7) Å	$\mu = 5.04 \text{ mm}^{-1}$
$\beta = 104.689 (1)^{\circ}$	T = 293 (2) K
$V = 1015.88 (8) \text{ Å}^3$	Slab, colourless
Z = 4	$0.33 \times 0.30 \times 0.11 \text{ mm}$

Data collection

Bruker SMART 1000 CCD	2309 independent reflections
diffractometer	2075 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.031$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -10 \rightarrow 8$
$T_{\min} = 0.287, T_{\max} = 0.607$	$k = -9 \rightarrow 10$
7093 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2

$R[F^2 > 2\sigma(F^2)] = 0.064$	+ 26.0795 <i>P</i>]
$wR(F^2) = 0.171$	where $P = (\tilde{F}_{o}^{2} + 2F_{c}^{2})/3$
S = 1.28	$(\Delta/\sigma)_{\rm max} = 0.001$
2309 reflections	$\Delta \rho_{\text{max}} = 1.23 \text{ e Å}^{-3}$
128 parameters	$\Delta \rho_{\min} = -1.01 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL9
	Extinction coefficient: 0.0028 (5)

 $w = 1/[\sigma^2(F_o^2) + (0.0155P)^2]$

 Table 1

 Selected geometric parameters (\mathring{A} , °).

Zn1-O1	1.929 (8)	Zn2-N2	2.021 (8)
Zn1-O3	1.932 (8)	P1-O5	1.497 (8)
Zn1-O2	1.932 (8)	P1-O3	1.518 (9)
Zn1-N1	2.016(8)	$P1-O2^{i}$	1.519 (7)
Zn2-O6	1.923 (7)	P2-O6	1.511 (8)
Zn2-O5	1.934 (8)	P2-O1	1.513 (8)
Zn2-O4	1.938 (8)	P2-O4 ⁱⁱ	1.519 (8)
P2-O1-Zn1	141.0 (5)	$P2^{iv}-O4-Zn2$	133.3 (5)
$P1^{iii}$ $-O2$ $-Zn1$	128.8 (5)	P1-O5-Zn2	143.6 (6)
P1-O3-Zn1	134.9 (5)	P2-O6-Zn2	128.9 (5)
Zn1-N1-C1-C1 ^v	-64.8 (13)	Zn2-N2-C2-C2 ^{vi}	170.1 (11)

Symmetry codes: (i)
$$-x, \frac{1}{2} + y, \frac{3}{2} - z$$
; (ii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$; (iv) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (v) $-x, 1 - y, 2 - z$; (vi) $1 - x, 1 - y, 1 - z$.

Several crystals of (I) were examined, and the diffraction quality was rather poor in all cases, with some peaks showing signs of being 'smeared' or split. All H atoms were placed in idealized locations and refined as riding on their carrier atoms (P–H = 1.32 Å, N–H = 0.90 Å and C–H = 0.97 Å). For all H atoms, the constraint $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}$ (carrier atom) was applied. The maximum difference peak is 1.22 Å from atom H2A.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N1-H1A\cdots O3^{i}$	0.90	2.20	3.099 (11)	173
$N1-H1B\cdots O4^{iii}$	0.90	2.10	2.984 (11)	167
$N2-H2A\cdots O2^{iv}$	0.90	2.11	2.995 (11)	170
$N2-H2B\cdots O6^{ii}$	0.90	2.14	3.038 (12)	177

Symmetry codes: (i) $-x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$; (iv) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97; molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Shape Software, 2003); software used to prepare material for publication: *SHELXL*97.

The authors thank Jillian Johnstone for experimental assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1223). Services for accessing these data are described at the back of the journal.

References

Alberti, G., Brunet, E., Dionigi, M., Juanes, O., Mata, M. J., Rodriguez-Ubis, J. C. & Vivani, R. (1999). *Angew. Chem. Int. Ed.* **38**, 3351–3353.

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Cheetham, A. K., Férey, G. & Loiseau, T. (1999), Angew, Chem. Int. Ed. 38.

Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3269–3292.

Choudhury, A., Kumar, U. D. & Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 158–161.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.

Fu, W., Shi, Z., Li, G., Znang, D., Dong, W., Chen, X. & Feng, S. (2004). Solid State Sci. 6, 225–228.

Kirkpatrick, A. & Harrison, W. T. A. (2004). *Solid State Sci.* **6**, 593–598. Lin, Z. E., Zhang, J., Zheng, S. T. & Yang, G. Y. (2004). *Solid State Sci.* **6**, 371–376.

Millange, F., Serre, C., Cabourdin, T., Marrot, J. & Féret, G. (2004). Solid State Sci. 6, 229–233.

O'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures 1. Patterns and Symmetry, p. 357. Washington, DC: Mineralogical Society of America.

Ritchie, L. K. & Harrison, W. T. A. (2004). Acta Cryst. C60, m634–m636.
Rodgers, J. A. & Harrison, W. T. A. (2000). Chem. Commun. pp. 2385–2386

Shape Software (2003). ATOMS. Version 6.0. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.